Decoding Eurocode 7

Andrew Bond and Andrew Harris
Long contents

About the authors xi
Acknowledgements xiii

Prologue 1
Construction Products Directive 89/106/CE 1
Scope of the book 2
Key features of the book 3
Outline of the book 3
Further information 6
Notes and references 6

1 The Structural Eurocodes 7
1.1 The Structural Eurocode programme 7
 1.1.1 Links between the Eurocodes 9
 1.1.2 Timetable for publication 11
1.2 The wider landscape 11
1.3 Standards organizations 14
 1.3.1 International Standardization Organization (ISO) 14
 1.3.2 European Committee for Standardization (CEN) 15
 1.3.3 National standards bodies (NSBs) 16
 1.3.4 Role of Eurocode 7 in UK practice 18
1.4 Summary of key points 21
1.5 Notes and references 21

2 Basis of structural design 25
2.1 Contents of the Eurocode 25
2.2 Requirements 27
2.3 Assumptions 29
2.4 Principles and Application Rules 29
2.5 Principles of limit state design 29
2.6 Design situations 30
2.7 Ultimate limit states 32
 2.7.1 Limit state EQU 32
 2.7.2 Limit state STR 34
 2.7.3 Limit state FAT 35
2.8 Serviceability limit states 35
2.9 Actions, combinations, and effects 36
 2.9.1 Actions 37
 2.9.2 Combinations of actions 39
 2.9.3 Effects of actions 43
2.10 Material properties and resistance 44
 2.10.1 Resistance 44
 2.10.2 Material properties 45
2.11 Geometrical data 49
2.12 Structural analysis and design by testing 50
2.13 Verification by the partial factor method 50
 2.13.1 Partial factors on actions 50
 2.13.2 Partial factors on material properties 51
 2.13.3 Tolerances on geometry 52
 2.13.4 Verification of strength for limit state STR 52
 2.13.5 Verification of stability for limit state EQU 53
2.14 Summary of key points 54
2.15 Worked examples 55
 2.15.1 Shear wall under combined loading 55
 2.15.2 Elevated bridge deck 59
 2.15.3 Concrete cylinder tests 65
2.16 Notes and references 68

3 General rules for geotechnical design 71
 3.1 Scope of Eurocode 7 Part 1 71
 3.2 Design requirements 73
 3.2.1 Commitment to limit state design 73
 3.2.2 Complexity of design 74
 3.2.3 Geotechnical categories 74
 3.3 Limit states 77
 3.4 Actions and design situations 78
 3.4.1 Design situations 78
 3.4.2 Geotechnical actions 79
 3.4.3 Distinction between favourable and unfavourable actions 80
 3.4.4 Should water pressures be factored? 82
 3.5 Design and construction considerations 85
 3.5.1 Durability 85
 3.5.2 Design considerations relating to construction 85
 3.5.3 Execution 85
 3.6 Geotechnical design 86
 3.6.1 Design by calculation 86
 3.6.2 Design by prescriptive measures 88
 3.6.3 Design by testing 88
 3.6.4 Design by observation 89
3.7 Supervision, monitoring, and maintenance 89
 3.7.1 Supervision 90
 3.7.2 Monitoring 90
 3.7.3 Maintenance 92
 3.7.4 Practical recommendations 92
3.8 The Geotechnical Design Report 92
3.9 Summary of key points 93
3.10 Notes and references 94

4 Ground investigation and testing 95
 4.1 Standards for geotechnical investigation and testing 95
 4.1.1 Eurocode 7 Part 2 95
 4.1.2 Complementary standards 96
 4.2 Planning ground investigations 97
 4.2.1 Aims of a geotechnical investigation 97
 4.2.2 Spacing of investigation points 99
 4.2.3 Depth of investigation points 100
 4.3 Identification and classification of soil 101
 4.3.1 Soil description 101
 4.3.2 Density of coarse soils 102
 4.3.3 Consistency and strength of fine soils 103
 4.4 Identification and classification of rock 104
 4.4.1 Rock description 104
 4.4.2 Rock material strength 104
 4.4.3 Discontinuities 105
 4.4.4 Weathering 105
 4.5 Soil and rock sampling 106
 4.5.1 Sampling methods 106
 4.5.2 Quality classes 106
 4.5.3 Applicability of sampling to obtain parameters 106
 4.5.4 Minimum testing 108
 4.6 Groundwater measurements 109
 4.6.1 Groundwater measuring systems covered 109
 4.6.2 Planning and execution 109
 4.6.3 Applicability of groundwater measurement systems 109
 4.7 Field tests in soil and rock 110
 4.7.1 Field tests covered 110
 4.7.2 Objectives 111
 4.7.3 Specific requirements 111
 4.7.4 Evaluation of tests results 111
 4.7.5 Obtaining derived values from the test results 112
 4.7.6 Applicability of field tests to obtain parameters 113
 4.8 Laboratory tests in soil and rock 114
 4.8.1 Laboratory tests covered 114
4.8.2 Objectives
4.8.3 Requirements
4.8.4 Evaluation and use of tests results
4.8.5 Applicability of laboratory tests to obtain parameters
4.9 Testing of geotechnical structures
4.10 Summary of key points
4.11 Worked examples
 4.11.1 Specification of field work
 4.11.2 Borehole log
 4.11.3 Specification of laboratory tests
4.12 Notes and references

5 Ground characterization
 5.1 From test results to design
 5.2 Deriving geotechnical parameters
 5.2.1 Overview
 5.2.2 Correlations
 5.2.3 Theory
 5.2.4 Empiricism
 5.2.5 Direct assessment
 5.2.6 Symbols
 5.3 Obtaining the characteristic value
 5.3.1 Problems applying statistics to geotechnical parameters
 5.3.2 Cautious estimate
 5.3.3 Representative values
 5.3.4 Moderately conservative and worst credible values
 5.3.5 How much ground is involved?
 5.3.6 Well-established experience
 5.3.7 Standard tables of characteristic values
 5.3.8 Summary of geotechnical characterization
 5.4 Case studies selecting characteristic values
 5.4.1 London and Lambeth clays at Holborn
 5.4.2 Singapore marine clay
 5.4.3 Thames Gravels at Gravesend
 5.4.4 Conclusions from the case studies
 5.5 Statistical methods for ground characterization
 5.5.1 Normal or log-normal distribution?
 5.5.2 Calculating the 95% confident mean value
 5.5.3 Statistics for parameters that vary with depth
 5.5.4 Dealing with small data sets
 5.5.5 Use or abuse of statistics?
 5.6 Summary of key points
 5.7 Worked examples
 5.7.1 Standard penetration tests in Thames Gravel
6 Verification of strength

6.1 Basis of design
 6.1.1 Effects of actions
 6.1.2 Resistance

6.2 Introducing reliability into design
 6.2.1 Actions and effects
 6.2.2 Material strength and resistance
 6.2.3 Geometry
 6.2.4 Verification
 6.2.5 Partial factors

6.3 Design approaches
 6.3.1 Design Approach 1
 6.3.2 Design Approach 2
 6.3.3 Design Approach 3
 6.3.4 Choice of Design Approach by different European countries

6.4 Alternative ways of dealing with design uncertainty
 6.4.1 Allowable or working stress design (ASD or WSD)
 6.4.2 Load and strength factor design
 6.4.3 Load and resistance factor design (LRFD)

6.5 Summary of key points
6.6 Notes and references

7 Verification of stability

7.1 Basis of design
7.2 Introducing reliability into the design
 7.2.1 Partial factors
7.3 Loss of static equilibrium
7.4 Uplift
7.5 Hydraulic failure
 7.5.1 Hydraulic heave
 7.5.2 Internal erosion
 7.5.3 Piping
7.6 Summary of key points
7.7 Worked examples
 7.7.1 Wind turbine
 7.7.2 Concrete dam
 7.7.3 Box caisson
 7.7.4 Basement subject to uplift
 7.7.5 Stability of weir against hydraulic failure
 7.7.6 Piping due to heave (HYD)
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.8</td>
<td>Notes and references</td>
<td>251</td>
</tr>
<tr>
<td>8</td>
<td>Verification of serviceability</td>
<td>253</td>
</tr>
<tr>
<td>8.1</td>
<td>Basis of design</td>
<td>253</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Effects of actions</td>
<td>254</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Limiting serviceability criteria</td>
<td>255</td>
</tr>
<tr>
<td>8.2</td>
<td>Introducing reliability into the design</td>
<td>256</td>
</tr>
<tr>
<td>8.3</td>
<td>Simplified verification of serviceability</td>
<td>258</td>
</tr>
<tr>
<td>8.4</td>
<td>Methods to determine settlement</td>
<td>260</td>
</tr>
<tr>
<td>8.5</td>
<td>Summary of key points</td>
<td>261</td>
</tr>
<tr>
<td>8.6</td>
<td>Worked examples</td>
<td>261</td>
</tr>
<tr>
<td>8.7</td>
<td>Notes and references</td>
<td>261</td>
</tr>
<tr>
<td>9</td>
<td>Design of slopes and embankments</td>
<td>263</td>
</tr>
<tr>
<td>9.1</td>
<td>Ground investigation for slopes and embankments</td>
<td>263</td>
</tr>
<tr>
<td>9.2</td>
<td>Design situations and limit states</td>
<td>264</td>
</tr>
<tr>
<td>9.3</td>
<td>Basis of design</td>
<td>265</td>
</tr>
<tr>
<td>9.4</td>
<td>Stability of an infinitely long slope</td>
<td>265</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Closed-form solution using global factor of safety</td>
<td>266</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Closed-form solution using partial factors from Eurocode 7</td>
<td>268</td>
</tr>
<tr>
<td>9.4.3</td>
<td>Design charts for infinitely long slopes</td>
<td>271</td>
</tr>
<tr>
<td>9.5</td>
<td>Stability of a finite slope (based on method of slices)</td>
<td>272</td>
</tr>
<tr>
<td>9.5.1</td>
<td>Undrained analysis based on total stresses</td>
<td>273</td>
</tr>
<tr>
<td>9.5.2</td>
<td>Eurocode 7 implementation of the Conventional Method</td>
<td>274</td>
</tr>
<tr>
<td>9.5.3</td>
<td>Drained analysis based on effective stresses</td>
<td>274</td>
</tr>
<tr>
<td>9.5.4</td>
<td>Eurocode 7 implementation of Bishop’s Routine Method</td>
<td>275</td>
</tr>
<tr>
<td>9.5.5</td>
<td>Design charts for finite slopes</td>
<td>277</td>
</tr>
<tr>
<td>9.6</td>
<td>Supervision, monitoring, and maintenance</td>
<td>278</td>
</tr>
<tr>
<td>9.7</td>
<td>Summary of key points</td>
<td>278</td>
</tr>
<tr>
<td>9.8</td>
<td>Worked examples</td>
<td>279</td>
</tr>
<tr>
<td>9.8.1</td>
<td>Infinite soil slope overlying permeable rock</td>
<td>279</td>
</tr>
<tr>
<td>9.8.2</td>
<td>Infinite soil slope overlying impermeable rock</td>
<td>284</td>
</tr>
<tr>
<td>9.8.3</td>
<td>Road cutting (using design charts)</td>
<td>290</td>
</tr>
<tr>
<td>9.8.4</td>
<td>Road cutting (using slope stability software)</td>
<td>297</td>
</tr>
<tr>
<td>9.8.5</td>
<td>Road embankment over an alluvial flood plain</td>
<td>300</td>
</tr>
<tr>
<td>9.9</td>
<td>Notes and references</td>
<td>304</td>
</tr>
<tr>
<td>10</td>
<td>Design of footings</td>
<td>305</td>
</tr>
<tr>
<td>10.1</td>
<td>Ground investigation for footings</td>
<td>305</td>
</tr>
<tr>
<td>10.2</td>
<td>Design situations and limit states</td>
<td>306</td>
</tr>
<tr>
<td>10.3</td>
<td>Basis of design</td>
<td>307</td>
</tr>
<tr>
<td>10.4</td>
<td>Footings subject to vertical actions</td>
<td>308</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Effects of actions</td>
<td>309</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Eccentric loading and effective foundation area</td>
<td>310</td>
</tr>
</tbody>
</table>
12 Design of embedded walls

12.1 Ground investigation for embedded walls
12.2 Design situations and limit states
12.3 Basis of design
 12.3.1 Role of CIRIA C580 in UK practice
 12.3.2 Unplanned excavation
 12.3.3 Selection of water levels
 12.3.4 Wall friction and adhesion
12.4 Limiting equilibrium methods
 12.4.1 Fixed-earth conditions
 12.4.2 Free-earth conditions
 12.4.3 At-rest values of earth pressure
 12.4.4 Limiting values of earth pressure
 12.4.5 Passive earth pressure: resistance or action?
 12.4.6 Net pressures
12.5 Soil-structure interaction analysis
 12.5.1 Sub-grade reaction models
 12.5.2 Numerical methods
12.6 Design for serviceability
12.7 Structural design
12.8 Supervision, monitoring, and maintenance
12.9 Summary of key points
12.10 Worked examples
 12.10.1 Cantilever embedded wall
 12.10.2 Anchored sheet pile wall
12.11 Notes and references

13 Design of piles

13.1 Ground investigation for piles
13.2 Design situations and limit states
13.3 Basis of design
 13.3.1 Design by static load tests
 13.3.2 Design by calculation
 13.3.3 Design using dynamic load tests
 13.3.4 Design using pile driving formulae or wave equation analysis
13.4 Piles subject to compression
 13.4.1 Downdrag
13.5 Piles subject to tension 452
13.6 Piles subject to transverse actions 454
13.7 Introducing reliability into the design of piles 454
 13.7.1 Partial factors 456
 13.7.2 Design Approach 1 457
 13.7.3 Design Approach 2 460
 13.7.4 Design Approach 3 462
13.8 Design by calculation 464
13.9 Design by testing 465
 13.9.1 Correlation factors 465
13.10 Traditional design 468
13.11 Changes made in the UK National Annex 470
 13.11.1 Changes to resistance factors 470
 13.11.2 Changes to correlation factors 472
13.12 Supervision, monitoring, and maintenance 474
13.13 Summary of key points 475
13.14 Worked examples 475
 13.14.1 Concrete pile driven into clay and sand 475
 13.14.2 Concrete pile from Example 13.1 to UK National Annex 484
 13.14.3 Static load tests for the Emirates Stadium in London 488
 13.14.4 Design of continuous flight auger piles from cone tests 494
 13.14.5 Designing to a set with a pile driving formula 501
13.15 Notes and references 507

14 Design of anchorages 509
14.1 Ground investigation for anchorages 510
14.2 Design situations and limit states 510
14.3 Basis of design 510
14.4 Anchorage tests
 14.4.1 Investigation tests 513
 14.4.2 Suitability tests 515
 14.4.3 Acceptance tests 516
14.5 Pull-out resistance from tests
 14.5.1 Characteristic pull-out resistance 517
 14.5.2 Design pull-out resistance 518
14.6 Pull-out resistance by calculation 520
14.7 Summary of key points 520
14.8 Worked example
 14.8.1 Grouted anchors supporting an embedded retaining wall 521
14.9 Notes and references 526

15 Execution of geotechnical works 529
15.1 The work of CEN TC 288 529
15.2 Piles 530
15.2.1 Bored piles 530
15.2.2 Displacement piles 532
15.2.3 Micropiles 535
15.3 Walls and steep slopes 537
15.3.1 Sheet pile walls 537
15.3.2 Diaphragm walls 539
15.3.3 Ground anchors 539
15.3.4 Reinforced fill 543
15.3.5 Soil nailing 545
15.4 Ground improvement 545
15.4.1 Grouting 545
15.4.2 Jet grouting 547
15.4.3 Deep mixing 549
15.4.4 Deep vibration 549
15.4.5 Vertical drainage 551
15.5 Future developments 554
15.6 Summary of key points 554
15.7 Notes and references 555

16 Geotechnical reports 557
16.1 Introduction 557
16.2 Geotechnical investigation and testing reports 558
 16.2.1 Drilling and sampling reports 558
 16.2.2 Field investigation reports 558
 16.2.3 Laboratory test reports 560
16.3 Ground Investigation Report 561
 16.3.1 Presentation 561
 16.3.2 Evaluation 562
 16.3.3 Derived values 563
16.4 Geotechnical Design Report 563
16.5 Comparison with existing practice 565
 16.5.1 British Standard BS 5930 565
 16.5.2 AGS Guidelines for preparing the Ground Report 567
 16.5.3 Geotechnical Baseline Reports 567
 16.5.4 Report checklists 568
16.6 Who writes what? 568
16.7 Summary of key points 570
16.8 Notes and references 571

Epilogue 573
 Reaction to the Eurocodes 573
 Dissemination 575
 Looking ahead 576
 Conclusion 576